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ABSTRACT

Local mesh smoothing algorithms have been shown to be
effective in repairing distorted elements in automatically gener-
ated meshes. The simplest such algorithm is Laplacian smooth-
ing, which moves grid points to the geometric center of incident
vertices. Unfortunately, this method operates heuristically and
can create invalid meshes or elements of worse quality than those
contained in the original mesh. In contrast, optimization-based
methods are designed to maximize some measure of mesh qual-
ity and are very effective at eliminating extremal angles in the
mesh. These improvements come at a higher computational
cost, however. In this article we propose three smoothing tech-
niques that combine a smart variant of Laplacian smoothing
with an optimization-based approach. Several numerical ex-
periments are performed that compare the mesh quality and
computational cost for each of the methods in two and three di-
mensions. We find that the combined approaches are very cost
effective and yield high-quality meshes.

INTRODUCTION

The finite element and finite volume solution methods have
proven to be effective tools in the numerical solution of many sci-
entific and engineering applications. Both techniques require a
spatial decomposition of the computational domain into a union
of simple geometric elements such as triangles or quadrilaterals
in two dimensions and tetrahedra or hexahedra in three dimen-
sions. If the geometry is complex, automatic mesh generation
tools are used to facilitate this decomposition (Lo, 1985, Shep-
hard and Georges, 1991, Weatherill, 1994). A problem with
these meshes is that the shape of the elements in the mesh can
vary significantly. For finite element techniques using simplicial
meshes, poorly shaped or distorted elements can result in nu-
merical difficulties during the solution process, particularly as
the elements approach the limits of 0° or 180° (Babuska and

Aziz, 1976, Fried, 1972). This problem is more severe in three
dimensions than in two dimensions because tetrahedral meshes
tend to have a larger proportion of severely distored elements
than do triangular meshes.

One approach used to repair poor quality meshes is to ad-
just the grid point locations without changing the mesh topol-
ogy. This approach is called mesh smoothing, and several re-
search groups have proposed different algorithms to perform grid
point adjustment, e.g. Field (1988), Amezua et al. (1995), and
Canann et al. (1993). In general, most mesh smoothing algo-
rithms are local techniques and adjust the geometric position
of each vertex individually to obtain improvement in a neigh-
borhood around that vertex. Some number of sweeps over the
adjustable vertices are performed to achieve overall improve-
ment in the mesh. Because the mesh may contain millions of
grid points, it is critical that each individual adjustment be com-
putationally inexpensive.

Perhaps the most commonly used local smoothing tech-
nique is Laplacian smoothing (Lo, 1985, Field, 1988). In this
method each grid point is moved to the geometric center of
the polygon determined by the incident vertices. This method
is computationally inexpensive, but operates heuristically and
does not guarantee improvement in the element quality. In fact,
it is possible to produce an invalid mesh containing elements
that are inverted or have negative area. One common variant
of Laplacian smoothing allows the grid point movement to take
place only if the mesh is improved according to some quality
measure. This smart Laplacian smoother guarantees an im-
proved mesh, but the new point location is not optimal.

One class of algorithms that avoids the creation of in-
valid elements and finds an optimal new location for the mesh
vertices uses optimization techniques (Amenta et al., 1997,
Parthasarathy and Kodiyalam, 1991, Shephard and Georges,
1991). These techniques offer the advantage of guaranteed mesh
improvement and validity. However, this guarantee comes at a



much higher computational cost than Laplacian smoothing.

In Freitag et al. (1995) we proposed a local optimization-
based mesh smoothing technique for two-dimensional triangu-
lar meshes that can serve as the core of an efficient parallel
algorithm with a provably fast runtime bound. In Freitag and
Ollivier-Gooch (1996) we extended this algorithm to three di-
mensions and followed a two-pronged approach for improving
tetrahedral meshes. We showed that face swapping followed
by optimization-based smoothing significantly improved dihe-
dral angles near 0 and 180 degrees for a number of test cases. In
contrast, face swapping followed by smart Laplacian smoothers
were unable to eliminate extremal angles in the mesh. Neither
technique was able to eliminate poor mesh elements that were
adjacent to each other or to geometry boundaries.

In two dimensions the optimization-based smoother was ap-
proximately five times more computationally expensive than the
smart Laplacian smoother and ten times more computationally
expensive in three dimensions. In this article, we propose several
techniques that combine the low cost Laplacian smoothing with
the optimization-based approach used only for the poorest qual-
ity elements. Numerical experiments are performed for several
test meshes generated using commonly available techniques such
as Delaunay point insertion, quadtree mesh generation, and a
wavefront algorithms.

The remainder of the article is organized as follows. In the
next section we briefly review the optimization-based technique
used in our experiments and formulate the proposed combined
approaches. We then perform a number of numerical experi-
ments on meshes generated from random point sets in both two
and three dimensions. These meshes contain severely distorted
elements and give a good indication of smoothing algorithm ef-
fectiveness. Following this analysis the suite of test cases is ex-
panded to include several application meshes. Finally, we sum-
marize the performance obtained with the combined approaches
and offer concluding remarks.

THE COMBINED SMOOTHING APPROACH

Local mesh smoothing techniques are formulated in terms
of the grid point to be adjusted, the free vertex, v, and that
grid point’s adjacent vertices, V. The location of the free vertex
is changed according to some rule or heuristic procedure based
on information available at the adjacent grid points. Suppose x
is the position of the free vertex; then the general form of the
smoothing algorithms is given by

Xnew = Smooth(x, V, |V, conn(V)),

where Xp.. 1s the proposed new position of v, |V is the number
of adjacent vertices, and conn(V') is the adjacent vertex connec-
tivity information. Ideally, the new location of the free vertex
will improve the mesh according to some measure of mesh qual-
ity such as dihedral angle or element aspect ratio.

To evaluate the mesh quality for the mesh elements, let
fi(x), i =1,...,n, be the values of mesh quality affected by a
change in x. For example, if we use the dihedral angles as a
mesh quality measure in a three-dimensional mesh, each tetra-
hedron would have six function values, one for each edge of the

tetrahedron. Thus, the total number of function values affected
by a change in x would be the number of tetrahedra containing
the vertex v multiplied by six. Let the set of function values
that obtain a minimum value at x, the active set, be denoted
by A(x).

The action of the function Smooth is determined by the
particular algorithm chosen, and in this section five algorithms
are described.

“Smart” Laplacian Smoothing

The first algorithm is a variant of Laplacian smoothing that
relocates the mesh grid point to the geometric center of the ad-
jacent grid points only if the quality of the local mesh is im-
proved according to some mesh quality measure. In that case,
the smoothing operator given above has the following action

Compute f(xo) and A(xo)
Compute X =), xv,/|V]
Compute f(%x) and A(%)

If A(%x) > A(xo) set Xpew =X

where xv, is the position of the sth adjacent vertex. Comput-
ing X is quite inexpensive, and the total time required by this
method is dominated by the two function evaluations, f(xo) and

f(%).

Optimization-based Smoothing

Optimization techniques use function and gradient evalua-
tions to find the minimum (or maximum) value that the func-
tion obtains in the solution space. The goal of the optimization
approach is to determine the position x* that maximizes the
composite function

6(x) = min (%) 1)
For most quality measures of interest, the functions fi(x) are
differentiable. However, the composite function ¢(x) has dis-
continuous derivatives wherever a change occurs in the active
set.

We solve this nonsmooth optimization problem using an
analogue of the steepest descent method for smooth functions.
The search direction s at each step is computed by solving
a quadratic programming problem that gives the direction of
steepest descent from all possible convex linear combinations of
the gradients in the active set at x. The line search subproblem
along s is solved by predicting the points at which the set of
active functions will change based on the first-order Taylor se-
ries approximations of the f;(x). The distance from the current
position to the point at which the active sets are predicted to
change gives the initial step length a. Standard step acceptance
and termination criteria are used to ensure a robust implemen-
tation. The action of the smoothing operator for optimization-
based smoothing is given in Figure 1.

It has be shown that this technique is equivalent to gener-
alized linear programming techniques by Amenta et al. (1997),
and thus the convex level set criterion can be used to determine



1=0
Compute f(xo) and A(xg)
While ((x; # x*) and (o > MIN_STEP)
and (¢ < MAX_ITER) and
(JA(x;) — A(x;-1)| > MIN_IMP))
Compute the gradients g;
Compute search direction s;
Compute «
While (STEP_.NOT_ACCEPTED)
and (o > MIN_STEP)
Compute x;41 = X; + as;
Compute f(x;+1) and A(x;4+1)
Test for step acceptance
a=«af2
Endwhile
1=1+1
Endwhile

Figure 1: The optimization-based smoothing algorithm

whether there is a unique solution x*. Amenta et. al. (1997)
describe the level sets for several mesh quality criteria. They
found that many such level sets meet the convexity requirement
for unique solutions. We note that similar local optimization-
based smoothing methods have been proposed for a variety of
optimization procedures and mesh quality measures, e.g. Bank
and Smith, Shephard and Georges (1991).

Experimental results demonstrating the effectiveness of the
optimization-based method compared with Laplacian smooth-
ing for two- and three-dimensional simplicial meshes are given
in Freitag, et al. (1995) and Freitag and Ollivier-Gooch (1996).
The optimization-based method was extremely effective at elim-
inating extremal angles from the mesh in both two and three
dimensions, whereas the Laplacian smoother was often unable
to significantly improve the most severely distorted elements.
These results also showed that more than three sweeps of the
mesh offer minimal improvements.

The Combined Approaches

Preliminary experiments in Freitag and Ollivier-Gooch
(1996) showed that the most effective and efficient smooth-
ing approach combined the smart Laplacian smoother with
the optimization-based algorithm. In this approach, the smart
Laplacian smoother was used to adjust every grid point and
was followed by the optimization-based algorithm in only the
poorest-quality elements. This technique was only twice as com-
putationally expensive as the smart Laplacian smoother used
alone and achieved meshes comparable in quality to those ob-
tained when the optimization-based smoother was used for all
grid points. In this article we will more fully investigate the
combined approach initially presented in Freitag and Ollivier-
Gooch (1996), along with two related approaches.

Combined Approach 1. In this technique, the active value
of the initial mesh is compared with a user-defined threshold
value. If the threshold value is exceeded, the smart variant

of Laplacian smoothing is used; otherwise, optimization-based
smoothing is performed.

Combined Approach 2. In this technique, smart Lapla-
cian smoothing is used as the first step for every grid point.

The active value in the local mesh after this step is compared
with a user-defined threshold value. If the active value ex-
ceeds the threshold value, the algorithm terminates; otherwise,
optimization-based smoothing is performed.

Combined Approach 3. In this technique, the active value
of the initial mesh is compared with a user-defined threshold

value. If the threshold value is exceeded, no smoothing is per-
formed; otherwise, Laplacian smoothing is used. If the active
value still does not exceed the threshold value following Lapla-
cian smoothing, the optimization-based smoother is used.

NUMERICAL EXPERIMENTS

We now compare the effectiveness and computational cost
of the Laplacian smoother, the optimization-based smoother,
and the three combined approaches given in the preceding sec-
tion. For each of the combined approaches, four different thresh-
old values, 87 = 5°, 10°, 15°, and 30°, were investigated. In
all cases, the mesh quality function used to determine the active
value is the minimum sine of the angles in the incident elements.
Because the sine function is small near the angles of 0° and 180°,
this mesh quality measure has the effect of eliminating both
large and small angles in the mesh. Effectiveness of the smooth-
ing technique is measured by examining the global minimum
and maximum angles/dihedral angles in two/three dimensions.
In each case we also report the number of cells smoothed with
the Laplacian technique and the number of cells smoothed with
the optimization-based technique. Computational cost is mea-
sured by the average time required to smooth each vertex in the
mesh. To analyze the overall mesh improvement, we examine for

selected cases. All computational experiments were performed
on a 110 MHz SPARC 5 workstation.

Meshes Generated from Random Point Sets
The first suite of tests was performed on meshes generated

from random point sets. For the two-dimensional test case, we
considered a Delaunay triangulation of 500 random points in the
unit square. The current version of the smoothing code adjusts
only interior vertices; and to eliminate the problem of poor as-
pect ratio triangles on the boundary, we placed 20 equally spaced
grid points on each side of the square. This mesh, rand2D, was
generated by using the Carnegie Mellon University Triangle code
(Shewchuk, 1996) and has a total of 580 points and 1078 trian-
gles.

In three dimensions, we use the unit cube geometry with
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Figure 2: The original two-dimensional Delaunay mesh generated from 500 random points and the same mesh after three passes of
Laplacian smoothing, optimization-based smoothing, and the second combined approach with a threshold of 30°

points incrementally inserted at random in the interior. FEach
point is connected to the vertices of the tetrahedron containing
it, with points near an existing face or edge in the tetrahedral-
ization projected onto that face or edge. This mesh has 1086
points approximately equally distributed through the domain
and 5104 tetrahedra. This test case was also considered in Fre-
itag and Ollivier-Gooch (1996), which focused on the evaluation
of swapping and smoothing mesh improvement techniques used
separately and together. It was found that swapping the faces
of the original mesh before applying the smoothing technique is
critical in obtaining good-quality meshes. Therefore, we swap
the faces of the initial mesh as follows using an in-sphere crite-
rion followed by a maxmin dihedral angle criterion and use this
mesh as the initial mesh, rand3D, for the numerical experiments
in this section.

Figure 2 shows the original two-dimensional mesh, rand2D,
and the same mesh after three passes of Laplacian smoothing,
optimization-based smoothing, and the second combined ap-
proach with a 30° threshold value. Each smoothing algorithm
considerably improves the mesh, and in Table 1 we summarize

Table 1: Mesh quality improvement for rand2D

Min. Max. Num. | Num. | Time
Case | 67 | Angle | Angle Lap. | Opt. | (ms)

Orig | — | .714° | 175.92° — — T =
Lap | — | 10.50° | 156.2° | 1500 0 | .440
Opt | — | 18.20° | 143.5° | 1500 0| 2.08
C1 5° [ 10.37° | 156.3° | 1457 43 | 503

C1 10° | 12.24° 149.1° 1337 163 678
C1 15° | 15.95° 148.0° 1107 393 .984

C1 30° | 18.20° 143.5° 258 1242 1.97
C2 5° | 10.47° 156.3° 1500 5 458
C2 10° | 11.52° 154.8° 1500 23 487
C2 15° | 16.28° 145.8° 1500 54 | .542
C2 30° | 18.55° 140.5° 1500 593 1.17
C3 5° 5.26° 166.0° 23 5 .264
C3 10° | 10.01° 155.1° 65 24 | .304
C3 15° | 15.00° 148.8° 132 58 .366

C3 30° | 18.55° 140.5° 749 609 1.10

the smoothing results.

In each case the initial angle of 0.714° is improved to at least
10° and in some cases is increased to more than 18° after three
passes of mesh smoothing. For this mesh, the optimzation-based
technique is approximately five times more expensive than the
smart Laplacian smoother. For each of the combined approaches
increasing the threshold value corresponds to an increase in both
the global minimum angle and the compuational cost. We note
that obtaining a minimum angle of 18° with the first combined
approach costs nearly as much as using optimization alone, be-
cause so many elements have minimum angles less than 30°.
The second and third approaches are much more cost effective
because using Laplacian smoothing eliminated the need to do
optimization for more than half of the grid points compared to
the first combined approach.

The results for rand3D are given in Table 2. In this case the
Laplacian smoother used alone improved the minimum angle
only to 0.471°, whereas the optimization-based smoother and
combined approaches increase the minimum angle to between

Table 2: Mesh quality improvement for rand3D

Min. Max. Num. | Num. | Time
Case | 6r | Dihed. | Dihed. Lap. Opt. | (ms)

Orig | — [ 107%° | 180.0° — — | —
Lap — | .471° [ 179.21° | 2808 0 203
Opt | — | 7.88° | 169.4° 0| 2808 | 21.3
C1 5° | 5.06° | 172.6° | 2722 86 | 2.69

C1 10° 8.21° 169.6° 2395 413 | 5.08
C1 15° 9.83° 168.0° 1883 925 | 9.69
C1 30° 7.88° 169.4° 47 2761 21.7
C2 5° 5.07° 172.6° 2808 38 | 2.38
C2 10° 8.35° 169.3° 2808 191 3.67
C2 15° 8.61° 167.6° 2808 531 6.38
C2 30° 8.79° 168.3° 2808 2704 | 20.7

C3 5° 5.02° 174.7° 55 39 1.39
C3 10° 7.63° 169.5° 296 222 | 3.00
C3 15° 8.73° 169.3° 717 579 | 5.91

C3 30° 8.79° 168.3° 2757 2704 | 20.6
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Figure 3: The distribution of angles in the original mesh and the same mesh after three passes of the indicated smoothing techniques

5° and 9.8° In three dimensions, this increase in quality us-
ing the optimization-based smoother alone is obtained at ap-
proximately ten times the cost of the smart Laplacian smoother
used alone. For each of the combined approaches, a minimum
angle of approximately 8° is obtained for a threshold value of
10°. Again, the second and third combined approaches are more
cost effective than the first; only one tenth the grid points re-
quire optimization-based smoothing, and in these cases the cost
is roughly 3 to 3.5 ms per smoothing call (compared with 2.2
ms for Laplacian smoothing and 20.5 ms for optimization-based
smoothing).

Complete angle distributions for the random meshes are
shown in Figure 3. In each graph we show the percentage of
angles in each six degree bin for the original mesh and the same
mesh after three passes of the Laplacian and optimization-based
smoothing techniques. In addition we include the angle distri-
butions for each combined technique at the threshold value that
corresponds to roughly two times the cost of Laplacian smooth-
ing. It is interesting to note that although the optimization-
based smoothing techniques more effectively eliminate extremal
angles in the meshes in both two and three dimensions, the aver-
aging technique used in Laplacian smoothing produces more el-
ements that tend toward equilateral (note the peaks near 60° in
2D and 72° in 3D). As expected, the angle distributions for the
first and second combined approaches fall between the Lapla-
cian and optimization-based smoothing techniques. The third
combined approach effectively eliminates the extremal angles,
but the overall distribution is not significantly improved because
only selected grid points are adjusted. In fact, in two dimensions
there is a peak at the threshold value of 30° for the C3 curve.

Application Meshes

We now analyze the performance of each of the smoothing
algorithms for various two- and three-dimensional application
meshes. We compare cost and effectiveness of the the smart
Laplacian smoother, the optimization-based smoother and the

combined approaches. For each combined technique we include
the case with the smallest threshold value that gives results com-
parable to the optimization-based approach.

The application meshes are generated for six different ge-
ometries meshed with different techniques. For two dimensions,
we use the following test cases:

1. a four element airfoil meshed with the Carnegie Mellon
Triangle Delaunay mesh generation code (Shewchuk, 1996)

2. a single element airfoil meshed with the QMG quadtree
mesh generator (Vavasis and Mitchell, 1996),

3. a branched channel geometry meshed with an anisotropic
wavefront algorithm used by Tim Barth at NASA Ames
(Barth, 1994). For this case we smooth only the sub-
set of grid points that are not incident to anisotropic el-
ements. In this way, transition regions between anisotropic
and isotropic elements can be significantly improved with-
out affecting boundary layer elements.

For three dimensions, we have

1. a tire incinerator meshed with the point insertion

GRUMMP software Ollivier-Gooch (1996),

2. a polygonal approximation to a teapot provided with the
GEOMPACK Delaunay mesh generation software (Joe,
1991), and

3. and tube geometry provided with the QMG octree mesh
generation software (Vavasis and Mitchell, 1996).

A summary of the initial mesh sizes and qualities is given for
the application meshes in Table 3.



Table 3: Application meshes

Num. | Num. Min. Max.
Geom/Mesher Dim. | Vert. | Elem. | Angle | Angle

Air-4/Triangle 2 5506 | 10068 | 15.04° | 144.9°
Chan./Barth 2 8547 | 16414 .983° | 173.7°
Air-1/QMG 2 2644 4790 3.81° | 162.2°
Incin./Grummp 3 2570 | 11098 | 107°° | 180.0°
Pot/G-Pack 3 2660 | 10765 | 15.84° | 139.1°
Tube/QMG 3 2846 | 11540 1.71° | 177.7°

The smoothing results are given in Table 4. In each case the
optimization-based method yields a greater increase in the mim-
imum angle than the Laplacian smoother does. As was the case
with the random meshes, the corresponding increase in compu-
tational cost is approximately a factor of four in two dimensions
and a factor of ten in three dimensions. For all cases, the com-
bined approaches are able to obtain the same minimum angle
as optimization-based smoothing used alone at a fraction of the
cost. The threshold value required for the QMG, GRUMMP,
and Barth meshes was less than 30° for all of the combined ap-
proaches. The Triangle and GEOMPACK initial meshes had a
minimum angle that was greater than 15° and therefore required
a 30° threshold to match the optimization-based improvements.
In general, the cost of the combined approaches in decreasing
order is C1, C2, and C3, which corresponds to a decreasing to-
tal number of function evaluations. In fact, for two-dimensional
meshes, the third combined approach required less time than the
Laplacian smoother because so few grid points required smooth-
ing. We note that the cost of the third approach can be further
reduced by evaluating only grid points that changed location or
are adjacent to grid points that changed location in the previous
smoothing pass.

CONCLUDING REMARKS

In this article we presented three smoothing techniques that
combined the low computational cost of the Laplacian smooth-
ing technique with the effectiveness of an optimization-based
approach. Numerical experiments in both two and three di-
mensions show that each approach is as effective at eliminating
extremal angles in the mesh as optimization-based smoothing
used alone at a fraction of the cost. In addition, the first and
second combined approaches created more equilateral elements
than optimization-based smoothing in both two and three di-
mensions. We conclude that these techniques may generate
higher-quality meshes than either Laplacian or optimization-
based smoothing used alone. In contrast, the C3 approach had
a relatively poor angle distribution because only a small num-
ber of the grid points were relocated. The computational costs
of the C3 technique were correspondingly small, and we found
that this approach was the least expensive combined approach.
In fact, it was often computationally cheaper than Laplacian
smoothing used on every grid point.

Several enhancements are being incorporated into the mesh
improvement software to increase its effectiveness and efficiency.

Table 4: Mesh quality improvement for the application
meshes

2D
Min. Max. Num. | Num. | Time
Geom | Tech. Angle | Angle Lap. Opt. | (ms)
Orig 15.04° | 144.9° — — —

Lap 15.06° | 138.3° | 13668 — .460
Air-4 Opt 19.07° | 132.7° — | 13668 1.68
C1/30 | 19.06° | 132.7° | 12403 1265 .650
C2/30 | 19.10° | 132.7° | 13668 1098 615
C3/30 | 19.11° | 132.7° 1265 1105 434

Orig .983° | 173.7° — — —
Lap 2.21° 169.9° | 15090 — 474
Chan Opt 2.94° 169.7° — | 15090 1.83
C1/5 2.98° 172.5° | 14988 102 476
C2/5 2.98° 172.1° | 15090 83 476
C3/5 2.95° 170.5° 96 82 274
Orig 3.81° 162.2° — — —
Lap 8.10° 155.1° 6438 — 463
Air-1 Opt 12.37° | 139.1° 6438 1.60

C1/15 | 12.46° | 144.1° 6245 193 535
C2/15 | 12.66° | 144.0° 6438 125 518
C3/15 | 12.18° | 149.6° 183 128 321

3D
Min. Max. Num. | Num. | Time
Geom | Tech Angle | Angle Lap. Opt. | (ms)
Orig 107°° | 180.0° — — | —

Lap .657° 178.8° 3966 — | 2.36
Incin Opt 9.56° 163.6° — 3966 | 22.5
C1/10 | 9.36° 167.2° 3852 114 | 3.27
C2/10 | 9.11° 168.4° 3966 49 | 2.83

C3/15 9.75° 165.1° 288 164 2.70
Orig 15.84° | 139.1° — — —
Lap 16.76° | 138.2° 3375 — 2.60
Pot Opt 19.64° | 148.5° — 3375 19.8
C1/30 | 19.64° | 154.4° 3168 207 4.04
C2/30 | 19.67° | 143.3° 3375 159 3.73
C3/30 | 19.66° | 143.1° 212 171 2.69
Orig 1.71° | 177.7° — —
Lap 1.17° 177.7° 3654 — 2.26
Tube Opt 4.77° 174.9° — 3654 21.4
C1/10 4.36° 175.5° 3080 574 6.24
C2/15 4.64° 175.3° 3654 1225 9.93
C3/15 4.37° 175.5° 1382 1234 9.39

The current software uses mesh smoothing to improve the
quality of the interior mesh once the surface mesh has been gen-
erated. We plan to add surface mesh-smoothing capabilities to
the optimization-based algorithm by incorporating additional
constraints to bind the free vertex to the boundary surfaces.
We are also interested in examining optimization-based smooth-
ing with other measures including aspect ratio and solid angles



and in developing smoothing measures appropriate for use on
anisotropic meshes.
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